Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$, a mercury(II) compound with mixed-valence oxoselenium(IV/VI) anions

Matthias Weil ${ }^{\text {a* }}$ and Uwe Kolitsch ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Chemische Technologien und Analytik, Technische Universität Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria, and ${ }^{\text {b }}$ Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria
Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 23 January 2002
Accepted 29 January 2002
Online 29 March 2002

The title compound, trimercury(II) bis[selenite(IV)] selenate(VI), contains three crystallographically inequivalent $\mathrm{Hg}^{\text {II }}$ cations with coordination numbers of eight (denoted Hg 1 and Hg 2) and five (denoted Hg 3). The corresponding coordination polyhedra around the metal atoms might be described as intermediates between a square antiprism and a triangulated dodecahedron for both Hg 1 and Hg 2 , and a strongly distorted truncated octahedron for $\mathrm{Hg} 3 . \infty_{\infty}^{2}\left[\mathrm{HgO}_{8 / 2}\right]$ layers of edgesharing $\left[\mathrm{HgO}_{8}\right]$ polyhedra propagate parallel to the $b c$ plane, and are connected via $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ tetrahedra and $\left[{\mathrm{Hg} 3 \mathrm{O}_{5}}\right]$ polyhedra along the a axis, forming an arrangement with channels propagating parallel to the b axis. The two independent $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}$ pyramids bridge the Hg atoms, and the non-bonding orbitals of the $\mathrm{Se}^{\mathrm{IV}}$ ions protrude into the channels from opposite sides.

Comment

Although the preparation and some physical properties of numerous compounds within the $\mathrm{Hg}-\mathrm{Se}-\mathrm{O}$ system have been published (Gmelin, 1969), only a few representatives of the series have been crystallographically characterized. Complete structure analyses have been performed on the mercuric selenites(IV) HgSeO_{3} (Koskenlinna, 1995), $\mathrm{Hg}_{3}\left(\mathrm{HSeO}_{3}\right)_{2^{-}}$ $\left(\mathrm{SeO}_{3}\right)_{2}$ (Koskenlinna \& Valkonen, 1996a) and $\mathrm{Hg}_{2}\left(\mathrm{SeO}_{3}\right)_{2} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$ (Koskenlinna \& Valkonen, 1996b), the hydrated mercuric selenate(VI) $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Stålhandske, 1978), and the mercurous selenate(VI) $\mathrm{Hg}_{2} \mathrm{SeO}_{4}$ (Dorm, 1969). Isotypism with the corresponding sulfates (VI) is reported for anhydrous HgSeO_{4} and the basic salt $\mathrm{Hg}_{3}\left(\mathrm{SeO}_{4}\right) \mathrm{O}_{2}$ (Aurivillius \& Malmros, 1961), the selenium analogue of the mineral schuetteite, $\mathrm{Hg}_{3}\left(\mathrm{SO}_{4}\right) \mathrm{O}_{2}$ (Nagorsen et al., 1962; Weil, 2001).

For a more detailed knowledge of the crystal chemistry of this structural family, the title compound was investigated as part of a project to prepare oxoselenites(IV) and oxoselen-
ates(VI) with mercury cations in different oxidation states and to analyse their crystal structures.

The title compound is composed of three independent $\mathrm{Hg}^{\text {II }}$ cations, two $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}$ pyramids and an $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ tetrahedron, corresponding to the formula $\mathrm{Hg}_{3}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{SeO}_{4}\right)$. It is one of the few crystallographically well characterized phases containing both selenium(IV) and selenium(VI) in the crystal structure. Other compounds with mixed-valent oxoselenium(IV/VI) anions, as listed in the latest version of the Inorganic Crystal Structure Database (ICSD; FIZ-Karlsruhe, 2001), are the mineral schmiederite, $\mathrm{Pb}_{2} \mathrm{Cu}_{2}(\mathrm{OH})_{4}\left(\mathrm{SeO}_{3}\right)$ $\left(\mathrm{SeO}_{4}\right)$ (Effenberger, 1987), and the synthetic phases $\mathrm{Li}_{2} \mathrm{Cu}_{3}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{SeO}_{4}\right)_{2}$ (Giester, 1989), $\left(\mathrm{Na}_{2} \mathrm{SeO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{SeO}_{3}\right)$.$\mathrm{H}_{2} \mathrm{O}$ (Baran et al., 1991), $\mathrm{Fe}\left(\mathrm{HSeO}_{3}\right)\left(\mathrm{SeO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Giester, 1992), $\mathrm{Er}\left(\mathrm{SeO}_{3}\right)\left(\mathrm{SeO}_{4}\right)_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}$ (Morris et al., 1992) and $\mathrm{La}\left(\mathrm{HSeO}_{3}\right)\left(\mathrm{SeO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Harrison \& Zhang, 1997). These structures comprise isolated $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}{ }^{2-}$ or $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3} \mathrm{H}^{-}$anions, and $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}{ }^{2-}$ anions, with a characteristic pyramidal geometry for the $\mathrm{Se}^{\mathrm{IV}}$ anions and tetrahedral geometry for the $\mathrm{Se}^{\mathrm{VI}}$ anions, whereas the mixed-valent selenium(IV/VI) oxide $\mathrm{Se}_{2} \mathrm{O}_{5}$ (Zak, 1980) is composed of corner-sharing $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}$ and $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ building units.

In $\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$, the polyhedra are linked via common O atoms to form a three-dimensional network. Edge-sharing $\left[\mathrm{HgO}_{8}\right]$ polyhedra build ${ }_{\infty}^{2}\left[\mathrm{HgO}_{8 / 2}\right]$ layers parallel to the $b c$ plane, which are bridged by the $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}$ groups. Two adjacent layers are connected via $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ tetrahedra and $\left[\mathrm{Hg} 3 \mathrm{O}_{5}\right]$ polyhedra along the a axis, forming channels extending parallel to the b axis, as depicted in Fig. 1.

Often, $\mathrm{Hg}^{\mathrm{II}}$-oxo compounds show a linear coordination of Hg with two short axial distances and a $[2+x]$ coordination, or, rarely, an $[x+2]$ coordination with two long axial distances; x ranges from 2 to 8 , with $x=4$ being the most frequently observed coordination polyhedron (tetragonal flattened or

Figure 1
A projection of the crystal structure of $\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$ along [010].
elongated octahedron). The influence of relativistic effects for the preference of this linear coordination has been published in the past (Norrby, 1991), and many examples of this behaviour are given in surveys of the unique crystal chemistry of $\mathrm{Hg}^{\text {II }}$, with its d^{10} electronic configuration (e.g. Aurivillius, 1965; Grdenić, 1965; Stålhandske, 1980; Müller-Buschbaum, 1995). However, none of the strongly distorted $\left[\mathrm{HgO}_{x}\right]$ polyhedra in $\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$ shows an explicit linear $[2+x]$ or $[x+2]$ arrangement.

The coordination numbers (CN) of the $\mathrm{Hg}^{\text {II }}$ cations are eight $(\mathrm{Hg} 1$ and Hg 2$)$ and five $(\mathrm{Hg} 3)$, excluding a very long $\mathrm{Hg} 3 \cdots \mathrm{O} 3$ distance of $\simeq 3 \AA$. The corresponding polyhedra around the $\mathrm{Hg}^{\text {II }}$ cations might be described as intermediates between a square antiprism and a triangulated dodecahedron for both Hg 1 and Hg 2 , and a truncated octahedron for Hg 3 (Fig. 2). The mean $\mathrm{Hg}-\mathrm{O}$ distances for the eight-coordinate $\mathrm{Hg}^{\text {II }}$ cations are comparable (mean $\mathrm{Hg}-\mathrm{O} 2.521 \AA$ for Hg 1 and $2.530 \AA$ for Hg 2), whereas the mean $\mathrm{Hg}-\mathrm{O}$ distance for the five-coordinate $\mathrm{Hg} 3,2.349 \AA$, is considerably shorter.

The two inequivalent selenite(IV) groups are situated above and below the cavities of the ${ }_{\infty}^{2}\left[\mathrm{HgO}_{8 / 2}\right]$ layers. Each selenite(IV) group acts as a bidentate ligand to two $\mathrm{Hg}^{\text {II }}$ cations, with the $\mathrm{O}-\mathrm{O}$ edges of the $\left[\mathrm{HgO}_{8}\right]$ polyhedra as common atoms and, additionally, by corner-sharing to the neighbouring $\mathrm{Hg}^{\text {II }}$ cations as a monodentate ligand (Fig. 3). This construction provides space for the lone pairs of the two $\mathrm{Se}^{\mathrm{IV}}$ ions, and both non-bonding orbitals protrude into the channels of the three-dimensional network. The arrangement of the selenite(IV) groups, with the apices adjusted to each other in the cavity of the structure, is a frequently observed structural unit in the crystal chemistry of $\mathrm{Se}^{\mathrm{IV}}$ compounds. The mean $\mathrm{Se}-\mathrm{O}$ distances of $1.710 \AA$ for Se 1 and $1.712 \AA$ for Se 2 are in the same range as the corresponding values within other mercuric selenites(IV): $1.709\left(\mathrm{HgSeO}_{3}\right.$; Koskenlinna, 1995), 1.692 and $1.689\left[\mathrm{Hg}_{2}\left(\mathrm{SeO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$; Koskenlinna \& Valkonen, 1996b], $1.692\left\{\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)\right] \mathrm{SeO}_{3}\right.$; Koskenlinna et al., 1996\} and $1.705 \AA\left[\mathrm{Hg}_{3}\left(\mathrm{HSeO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}\right.$; Koskenlinna \& Valkonen, 1996a]. Also, the intrapolyhedral geometry of the $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{3}$ pyramids (mean $\mathrm{O}-\mathrm{Se}-\mathrm{O} 97.1^{\circ}$ for Se 1 and 97.8° for Se 2) are in good agreement with the data for other selenites(IV) listed in the most recent review of this structural family (Verma, 1999).

Figure 2
View of the $\left[\mathrm{HgO}_{x}\right]$ coordination polyhedra in $\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$, with displacement ellipsoids drawn at the 74% probability level (the symmetry codes are as in Table 1).

Figure 3
Part of a ${ }_{\infty}^{2}\left[\mathrm{HgO}_{8 / 2}\right]$ layer in $\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}$, with bridging selenite(IV) groups above and below the cavities. $\left[\mathrm{Hg} 1 \mathrm{O}_{8}\right]$ polyhedra are light grey and $\left[\mathrm{Hg}_{2} \mathrm{O}_{8}\right]$ polyhedra are dark grey.

The selenate(VI) group is slightly distorted from the geometry of an ideal $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ tetrahedron, and the mean $\mathrm{Se}-\mathrm{O}$ distance of $1.644 \AA$ is similar to the observed bond-length distribution for other mercury selenates(VI): 1.641 $\left(\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right.$; Stålhandske, 1978) and $1.64 \AA\left(\mathrm{Hg}_{2} \mathrm{SeO}_{4}\right.$; Dorm, 1969). The closest bonded O atom (O9) is also coordinated to two Hg atoms with long distances, whereas the long bonded O 8 atom has only one Hg atom $(\mathrm{Hg} 3)$ with a short $\mathrm{Hg}-\mathrm{O}$ bond as an additional coordination partner. Another O atom with $\mathrm{CN}=2$ is O 7 , and both atoms bridge the SeO_{4} tetrahedron and the $\left[\mathrm{HgO}_{5}\right]$ polyhedron. The coordination numbers of the other O atoms range from 3 to $4 ; \mathrm{CN}=3$ for atoms O1, O2, O3, O9 and O10 $(1 \times \mathrm{Se}, 2 \times \mathrm{Hg})$, and $\mathrm{CN}=4$ for atoms O4, O5 and O6 $(1 \times \mathrm{Se}, 3 \times \mathrm{Hg})$.

Results from the bond-valence sum (BVS) calculations, using the parameters provided by Brese \& O'Keefe (1991), are in accordance with the expected values: $\mathrm{Hg} 12.10, \mathrm{Hg} 2$ 2.18, Hg 3 2.06, Se 1 3.93, Se2 3.93 and Se3 5.91. The BVS for the O atoms of the selenite(IV) groups range from 2.09 to 2.20, and those of the selenate(VI) group from 1.76 to 1.89 .

Experimental

Single crystals of the title compound were synthesized under hydrothermal conditions, starting from microcrystalline HgSeO_{4} in demineralized water (Teflon-lined steel autoclave, filling degree $c a$ $70 \%, 493 \mathrm{~K}, 10 \mathrm{~d}$). Besides yellow crystals of the hitherto unknown basic salt $\mathrm{HgSeO}_{4} \cdot \mathrm{HgO}$ [space group $P 2_{1} / c$ (No. 14), $a=$ 9.6247 (12) $\AA, b=7.1313$ (9) $\AA, c=14.8713$ (18) \AA and $\beta=$ 109.811 (2) ${ }^{\circ}$; Weil, 2002] and red-brown crystals of $\mathrm{Hg}_{3}\left(\mathrm{SeO}_{4}\right) \mathrm{O}_{2}$ (Aurivillius \& Malmros, 1961; Nagorsen et al., 1962), colourless crystals of the title compound of up to 2 mm in length were also obtained.

Crystal data

```
\(\mathrm{Hg}_{3} \mathrm{Se}_{3} \mathrm{O}_{10}\)
\(M_{r}=998.65\)
Monoclinic, \(P 2_{1}\)
\(a=8.3979\) (9) A
\(b=5.3327\) (6) \(\AA\)
\(c=11.1482(12) \AA\)
\(\beta=108.422(2)^{\circ}\)
\(V=473.67(9) \AA^{3}\)
\(\beta=108.422(2)^{\circ} \AA^{3}\)
\(V=473.67(9) \AA^{3}\)
\(Z=2\)
```


Data collection

Siemens SMART CCD areadetector diffractometer

ω scans

Absorption correction: numerical (HABITUS; Herrendorf, 1993-1997)
$T_{\text {min }}=0.064, T_{\text {max }}=0.446$
6813 measured reflections

$$
\begin{aligned}
& D_{x}=7.002 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 981 \\
& \quad \text { reflections } \\
& \theta=5.3-59.7^{\circ} \\
& \mu=60.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Fragment, colourless } \\
& 0.18 \times 0.07 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

1553 independent reflections (plus 1131 Friedel-related reflections) 2435 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=30.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-7 \rightarrow 7$
$l=-15 \rightarrow 15$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027\)
\(w R\left(F^{2}\right)=0.060\)
\(S=1.02\)
2684 reflections
146 parameters
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.025 P)^{2}\right]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
```

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.98 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.51 \mathrm{e}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0090 (3)
Absolute structure: Flack (1983)
Flack parameter $=-0.015(11)$

Systematic absences $k=2 n+1$ for the ($0 k 0$) reflections indicated space groups $P 2_{1}$ (No. 4) and $P 2_{1} / m$ (No. 11). Initial attempts to solve the crystal structure in one of these two possible space groups using both direct methods and a Patterson synthesis with SHELXS97

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{O} 1^{\text {i }}$	2.287 (6)	$\mathrm{Hg} 3-\mathrm{O}^{\text {viii }}$	2.197 (7)
$\mathrm{Hg} 1-\mathrm{O} 3$	2.293 (7)	Hg3-O6	2.201 (7)
$\mathrm{Hg} 1-\mathrm{O}_{4}{ }^{\text {i }}$	2.312 (7)	Hg3-O8	2.263 (7)
$\mathrm{Hg} 1-\mathrm{O} 4$	2.411 (7)	$\mathrm{Hg} 3-\mathrm{O} 7^{\text {viii }}$	2.304 (7)
Hg1-O5	2.612 (8)	Hg3-O4	2.782 (7)
$\mathrm{Hg} 1-\mathrm{O} 10{ }^{\text {iii }}$	2.677 (7)	$\mathrm{Hg} 3-\mathrm{O}^{\text {viii }}$	3.027 (6)
$\mathrm{Hg} 1-\mathrm{O}^{\text {iv }}$	2.738 (8)	Se1-O1	1.705 (6)
Hg1-O6	2.840 (9)	Se1-O5 ${ }^{\text {ix }}$	1.709 (7)
$\mathrm{Hg} 2-\mathrm{O} 2$	2.226 (6)	$\mathrm{Se} 1-\mathrm{O} 4^{\text {ix }}$	1.720 (6)
$\mathrm{Hg} 2-\mathrm{O} 2^{\text {v }}$	2.295 (7)	Se2-O6	1.702 (7)
Hg2-O1	2.301 (6)	Se2-O3	1.714 (6)
$\mathrm{Hg} 2-\mathrm{O} 3^{\text {i }}$	2.340 (6)	Se2-O2	1.719 (6)
$\mathrm{Hg} 2-\mathrm{O} 10^{\text {vi }}$	2.686 (7)	Se3-O9	1.613 (7)
$\mathrm{Hg} 2-\mathrm{O}^{\text {v }}$	2.686 (8)	Se3-O7	1.643 (6)
$\mathrm{Hg} 2-\mathrm{O}^{\text {vii }}$	2.796 (7)	Se3-O10	1.647 (6)
$\mathrm{Hg} 2-\mathrm{O} 9^{\text {iii }}$	2.906 (8)	Se3-O8	1.674 (7)
$\mathrm{O} 1-\mathrm{Se} 1-\mathrm{O}{ }^{\text {ix }}$	94.7 (3)	O9-Se3-O7	109.2 (3)
$\mathrm{O} 1-\mathrm{Se} 1-\mathrm{O} 4{ }^{\text {ix }}$	100.8 (3)	O9-Se3-O10	113.6 (4)
$\mathrm{O}{ }^{\text {ix }}-\mathrm{Se} 1-\mathrm{O} 4^{\text {ix }}$	95.8 (3)	O7-Se3-O10	109.4 (4)
O6-Se2-O3	97.7 (4)	O9-Se3-O8	109.3 (4)
O6-Se2-O2	93.5 (3)	O7-Se3-O8	108.4 (3)
$\mathrm{O} 3-\mathrm{Se} 2-\mathrm{O} 2$	102.3 (3)	O10-Se3-O8	106.9 (3)

Symmetry codes: (i) $-x$, $\frac{1}{2}+y, 1-z$; (ii) $-x, y-\frac{1}{2},-z$; (iii) $x-1, y, z$; (iv) $-x, \frac{1}{2}+y,-z$; (v) $-x, y-\frac{1}{2}, 1-z$; (vi) $1-x, \frac{1}{2}+y, 1-z$; (vii) $1-x, y-\frac{1}{2}, 1-z$; (viii) $x, 1+y, z$; (ix) $x, y, 1+z$.
(Sheldrick, 1997) and SHELXL97 (Sheldrick, 1997) were unsuccessful. Therefore, attempts were made in space group P1 (No. 1). The Hg atoms were located by direct methods, and the Se and O atoms were found by subsequent Fourier syntheses. Analysis of the atomic coordinates thus obtained using PLATON (Spek, 2001) clearly indicated a higher symmetry in $P 2_{1}$ (No. 4). After transformation of the appropriate parameters, the structure was refined in this monoclinic space group. No additional symmetry was then suggested by PLATON. Moreover, the Flack parameter (Flack, 1983) gives a clear indication of the absence of any centre of symmetry.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97; molecular graphics: ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1358). Services for accessing these data are described at the back of the journal.

References

Aurivillius, K. (1965). Ark. Kemi, 24, 151-187.
Aurivillius, K. \& Malmros, B. (1961). Acta Chem. Scand. 15, 1932-1938.
Baran, J., Lis, T., Marchewka, M. \& Ratajczak, H. (1991). J. Mol. Struct. 250, 13-45.
Brese, N. E. \& O'Keefe, M. (1991). Acta Cryst. B47, 192-197.
Dorm, E. (1969). Acta Chem. Scand. 23, 1607-1615.
Dowty, E. (1998). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Effenberger, H. (1987). Mineral. Petrol. 36, 3-12.
FIZ-Karlsruhe (2001). ICSD. 2001/1 version. Web address: http://www.fizkarlsruhe.de/fiz/products/icsd/welcome.html.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Giester, G. (1989). Monatsh. Chem. 120, 661-666.
Giester, G. (1992). Monatsh. Chem. 123, 957-963.
Gmelins Handbuch der Anorganischen Chemie (1969). 34 Quecksilber B4,
8. Auflage, S. 1094f. Weinheim: Verlag Chemie.

Grdenić, D. (1965). Q. Rev. Chem. Soc. 19, 303-328.
Harrison, W. T. A. \& Zhang, Z. (1997). Eur. J. Solid State Inorg. Chem. 34, 599-606.
Herrendorf, W. (1993-1997). HABITUS. Universities of Karlsruhe and Gießen, Germany.
Koskenlinna, M. (1995). Acta Cryst. C51, 1040-1042.
Koskenlinna, M. \& Valkonen, J. (1996a). Acta Cryst. C52, 491-493.
Koskenlinna, M. \& Valkonen, J. (1996b). Acta Cryst. C52, 1070-1072.
Koskenlinna, M., Valkonen, J. \& Fröhlich, R. (1996). Acta Cryst. C52, 10721074.

Morris, R. E., Wilkinson, A. P. \& Cheetham, A. K. (1992). Inorg. Chem. 31, 4774-4777.
Müller-Buschbaum, H.-K. (1995). J. Alloys Compd, 229, 107-122.
Nagorsen, G., Lyng, S., Weiss, A. \& Weiss, A. (1962). Angew. Chem. 74, 119.
Norrby, L. J. (1991). J. Chem. Educ. 68, 110-113.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
Stålhandske, C. (1978). Acta Cryst. B34, 1408-1411.
Stålhandske, C. (1980). PhD thesis, University of Lund, Sweden.
Verma, V. P. (1999). Thermochim. Acta, 327, 63-102.
Weil, M. (2001). Acta Cryst. E57, i98-i100.
Weil, M. (2002). In preparation.
Zak, Z. (1980). Z. Anorg. Allg. Chem. 460, 81-85.

